

We have

$$\begin{array}{c} \langle \chi | \rho(t_{2}) | \chi \rangle = d \\ \langle \chi | \rho(t_{2}) | \chi \rangle = d \\ \langle \chi | \chi \rangle = d^{2} \\ \langle \chi | \chi \rangle = d^{2$$

where $P_L = d(1)^{-1} \exp(-2\pi 1 - 1 \Delta_1 \omega(L)) \mathcal{J}_L$ and we use "blackboard framing" to compute w(L): Next, we want to compute J(L; 2,,..., 2m) with several link components from JL. -> need concept of "cabling" Let K. be an oriented framed Knot with framing t. Take K, to be the companion) Knot on tubular bodr. of Ko giving rise to framing t. -> two-component link

We first compute d(2) for 2>1. Lemma 2: $d(\lambda) = \frac{q^{(\lambda+1)/2} - q^{-(\lambda+1)/2}}{q^{1/2} - q^{-1/2}}$ where $q^{1/2} = \exp\left(\frac{2\pi}{2(k+2)}\right)$ Proof We have d(0) = 1 and $d(1) = \frac{q - q^{-1}}{q!_{2} - q^{-1}_{2}}$ Let us now compute d(s) for > 1. Consider the cabling for the trivial knot with O framing $\rightarrow d(x) d(m) = \sum N_{nm} d(v)$ (*) Observe that $\frac{q^{(\lambda+1)/2} - q^{-(\lambda+1)/2}}{q^{1/2} - q^{-1/2}} = \frac{\sum_{o\lambda}}{\sum_{oo}}$ where $S_{n} = \sqrt{\frac{2}{k+2}} \sin \left(\frac{\lambda+i}{k+2}\right)$ -> It will be enough to show that d(n)= Son satisfies (*)

This follows from the Verlinde formula
(Prop. 6, \$6):

$$N_{2mr} = \dim \mathcal{H}(p_1, p_2, p_3; \lambda, \mu, \nu)$$

 $= \sum_{\chi} \frac{S_{2\chi} S_{m\chi} S_{r\chi}}{S_{0\chi}}$

Namely,

$$\sum_{r} N_{nm}^{v} d(r) = \sum_{r,\kappa} \frac{S_{nk} S_{n\kappa} S_{r\kappa}}{S_{o\kappa}} \frac{S_{o\nu}}{S_{o\nu}}$$

$$= \sum_{\kappa} \frac{S_{n\kappa} S_{n\kappa} \delta_{o\kappa}}{S_{o\kappa} S_{o\nu}} = \frac{S_{no}}{S_{o\nu}} \frac{S_{no}}{S_{o\nu}}$$

$$\frac{\Pi}{S_{o\kappa} S_{o\kappa} S_{o\nu}} = \frac{S_{no}}{S_{o\nu}} \frac{S_{no}}{S_{o\nu}}$$

$$\frac{\Gamma}{S_{o\nu}}$$

$$\frac{Zet}{K_{o}} be an oriented framed knot and let K_{o} UK, be a link obtained by cobling of K_{o}. We have:
$$\frac{Zemma 3:}{Zemma 3:}$$
The invariant $\int (K_{o}, K_{i}; A_{i}m) dr the link K_{o} UK, obtained as a cobling of K_{o} satisfies $\int (K_{o}, K_{i}; A_{i}m) dr the link K_{o} UK, obtained as a cobling of K_{o} satisfies $\int (K_{o}, K_{i}; A_{i}m) dr the structure constants of the finsion algebra R_{\kappa}.$$$$$

Define generalized notion of J-polynomial
by considering invariant
$$J(L; x_1, ..., x_m)$$
 with
 $x_1, ..., x_m \in \mathbb{R}_k$. For $x_j = v_{2j}$ for $j = 1, ..., m$,
 $J(L; x_1, ..., x_m) = J_L(L; \lambda_1, ..., \lambda_m)$
Then for $x_j = v_1 \cdot v_m$ take
 $J(L; ..., v_n \cdot v_n, ...) = \sum_{\nu} N_{nm} J(K_1 \cdots v_{\nu m})$.
 \rightarrow obtain multi-linear map
 $J(L): \mathbb{R}_k^{Om} \rightarrow \mathbb{C}$
Proposition 3:
For links L_1 and L_2 contained in disjoint
3-balls B_1 and B_2 respectively, we have
 $J(L, UL_2; m_1, m_2) = J(L_1, m_1) J(L_2; m_2)$
Proof:
In the construction of $Z(L_1 \cup L_2; m_1 \cup m_2)$
put B_1 and B_2 in such a way that
 $Z(L_1 \cup L_2; m_1 \cup m_2) = Z(L_1; m_1) \circ Z(L_2; m_2)$
 $= Z(L_1; M_1) Z(L_2; m_2)$

Definition:
We denote by E the mirror image of L.
("look from the other side of the
blackboard")
Proposition 4:
Zet L be an ariented framed link. For the
mirror image E we have

$$J(E, \lambda) = J(L, \lambda)$$

where the right hand side stands for the
complex conjugate of $J(L, \lambda)$.
Proof:
The monodromy matrix $\rho(\sigma^{-1})$ is obtained
from $\rho(\sigma)$ by replacing q with q^{-1} . The
entries of connection matrix F and $d(\lambda)$
are real $\rightarrow J_E(q) = J_L(q^{-1})$.
Since q is root of unity
 $\rightarrow J(E, \lambda) = J(L, \lambda)$

Oriented framed tangles:
Set
$$X = C \times [0,1]$$

Zet $p_{1,1} \dots p_m$ be m distinct points on the
real line of $X_0 = C \times \{0\}$ and let
 $q_{1,1} \dots q_n$ be n distinct points on real
line of $X_1 = C \times \{0\}$.
A compact 1-manifold T in X with
boundary $\{p_{1,1} \dots p_m, q_{1,1} \dots, q_n\}$ is called
an (m, n) -"tangle"
 $Z(T_1 n)$:
 $Y_1 \dots Y_n$
Similarly, we get a linear map
 $J(T_1 n)$: $V_{n_1} \dots M_n$
"tangle operator"